Self-organizing neural architecture for reinforcement learning
Self-organizing neural networks are typically associated with unsupervised learning. This paper presents a self-organizing neural architecture, known as TD-FALCON, that learns cognitive codes across multi-modal pattern spaces, involving sensory input, actions, and rewards, and is capable of adapting...
محفوظ في:
المؤلف الرئيسي: | TAN, Ah-hwee |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2006
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/6833 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Direct code access in self-organizing neural networks for reinforcement learning
بواسطة: TAN, Ah-hwee
منشور في: (2007) -
Fast reinforcement learning under uncertainties with self-organizing neural networks
بواسطة: TENG, Teck-Hou, وآخرون
منشور في: (2015) -
Self-organizing agents for reinforcement learning in virtual worlds
بواسطة: KANG, Yilin, وآخرون
منشور في: (2010) -
A self-organizing neural architecture integrating desire, intention and reinforcement learning
بواسطة: TAN, Ah-hwee, وآخرون
منشور في: (2010) -
Self-organizing neural architectures and cooperative learning in a multiagent environment
بواسطة: XIAO, Dan, وآخرون
منشور في: (2007)