Context-aware advertisement recommendation for high-speed social news feeding
Social media advertising is a multi-billion dollar market and has become the major revenue source for Facebook and Twitter. To deliver ads to potentially interested users, these social network platforms learn a prediction model for each user based on their personal interests. However, as user intere...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2016
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7122 https://ink.library.smu.edu.sg/context/sis_research/article/8125/viewcontent/07498266_pv.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Social media advertising is a multi-billion dollar market and has become the major revenue source for Facebook and Twitter. To deliver ads to potentially interested users, these social network platforms learn a prediction model for each user based on their personal interests. However, as user interests often evolve slowly, the user may end up receiving repetitive ads. In this paper, we propose a context-aware advertising framework that takes into account the relatively static personal interests as well as the dynamic news feed from friends to drive growth in the ad click-through rate. To meet the real-time requirement, we first propose an online retrieval strategy that finds k most relevant ads matching the dynamic context when a read operation is triggered. To avoid frequent retrieval when the context varies little, we propose a safe region method to quickly determine whether the top-k ads of a user are changed. Finally, we propose a hybrid model to combine the merits of both methods by analyzing the dynamism of news feed to determine an appropriate retrieval strategy. Extensive experiments conducted on multiple real social networks and ad datasets verified the efficiency and robustness of our hybrid model. |
---|