Selective value coupling learning for detecting outliers in high-dimensional categorical data
This paper introduces a novel framework, namely SelectVC and its instance POP, for learning selective value couplings (i.e., interactions between the full value set and a set of outlying values) to identify outliers in high-dimensional categorical data. Existing outlier detection methods work on a f...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2017
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/7142 https://ink.library.smu.edu.sg/context/sis_research/article/8145/viewcontent/3132847.3132994.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | This paper introduces a novel framework, namely SelectVC and its instance POP, for learning selective value couplings (i.e., interactions between the full value set and a set of outlying values) to identify outliers in high-dimensional categorical data. Existing outlier detection methods work on a full data space or feature subspaces that are identified independently from subsequent outlier scoring. As a result, they are significantly challenged by overwhelming irrelevant features in high-dimensional data due to the noise brought by the irrelevant features and its huge search space. In contrast, SelectVC works on a clean and condensed data space spanned by selective value couplings by jointly optimizing outlying value selection and value outlierness scoring. Its instance POP defines a value outlierness scoring function by modeling a partial outlierness propagation process to capture the selective value couplings. POP further defines a top-k outlying value selection method to ensure its scalability to the huge search space. We show that POP (i) significantly outperforms five state-of-the-art full space- or subspace-based outlier detectors and their combinations with three feature selection methods on 12 real-world high-dimensional data sets with different levels of irrelevant features; and (ii) obtains good scalability, stable performance w.r.t. k, and fast convergence rate. |
---|