Selective value coupling learning for detecting outliers in high-dimensional categorical data
This paper introduces a novel framework, namely SelectVC and its instance POP, for learning selective value couplings (i.e., interactions between the full value set and a set of outlying values) to identify outliers in high-dimensional categorical data. Existing outlier detection methods work on a f...
Saved in:
Main Authors: | PANG, Guansong, XU, Hongzuo, CAO Longbing, ZHAO, Wentao |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2017
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/7142 https://ink.library.smu.edu.sg/context/sis_research/article/8145/viewcontent/3132847.3132994.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Unsupervised feature selection for outlier detection by modelling hierarchical value-feature couplings
由: PANG, Guansong, et al.
出版: (2016) -
Homophily outlier detection in non-IID categorical data
由: PANG, Guansong, et al.
出版: (2021) -
CURE: Flexible categorical data representation by hierarchical coupling learning
由: JIAN, Songlei, et al.
出版: (2019) -
Sparse modeling-based sequential ensemble learning for effective outlier detection in high-dimensional numeric data
由: PANG, Guansong, et al.
出版: (2018) -
Heterogeneous univariate outlier ensembles in multidimensional data
由: PANG, Guansong, et al.
出版: (2020)