Selective value coupling learning for detecting outliers in high-dimensional categorical data
This paper introduces a novel framework, namely SelectVC and its instance POP, for learning selective value couplings (i.e., interactions between the full value set and a set of outlying values) to identify outliers in high-dimensional categorical data. Existing outlier detection methods work on a f...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/7142 https://ink.library.smu.edu.sg/context/sis_research/article/8145/viewcontent/3132847.3132994.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|