Rotation invariant convolutions for 3D point clouds deep learning
Recent progresses in 3D deep learning has shown that it is possible to design special convolution operators to consume point cloud data. However, a typical drawback is that rotation invariance is often not guaranteed, resulting in networks that generalizes poorly to arbitrary rotations. In this pape...
Saved in:
Main Authors: | , , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2019
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/7942 https://ink.library.smu.edu.sg/context/sis_research/article/8945/viewcontent/313100a204.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |