Rotation invariant convolutions for 3D point clouds deep learning
Recent progresses in 3D deep learning has shown that it is possible to design special convolution operators to consume point cloud data. However, a typical drawback is that rotation invariance is often not guaranteed, resulting in networks that generalizes poorly to arbitrary rotations. In this pape...
محفوظ في:
المؤلفون الرئيسيون: | ZHANG, Zhiyuan, HUA, Binh-Son, ROSEN, David W., YEUNG, Sai-Kit |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/7942 https://ink.library.smu.edu.sg/context/sis_research/article/8945/viewcontent/313100a204.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
RIConv++: Effective rotation invariant convolutions for 3D point clouds deep learning
بواسطة: ZHANG, Zhiyuan, وآخرون
منشور في: (2022) -
ShellNet: Efficient point cloud convolutional neural networks using concentric shells statistics
بواسطة: ZHANG, Zhiyuan, وآخرون
منشور في: (2019) -
SESS: Self-Ensembling Semi-Supervised 3D Object Detection
بواسطة: Na Zhao, وآخرون
منشور في: (2020) -
3D convolutional neural networks for efficient and robust hand pose estimation from single depth images
بواسطة: Ge, Liuhao, وآخرون
منشور في: (2019) -
Self-supervised video representation learning by uncovering spatio-temporal statistics
بواسطة: WANG, Jiangliu, وآخرون
منشور في: (2022)