Planning and learning for Non-Markovian negative side effects using finite state controllers

Autonomous systems are often deployed in the open world where it is hard to obtain complete specifications of objectives and constraints. Operating based on an incomplete model can produce negative side effects (NSEs), which affect the safety and reliability of the system. We focus on mitigating NSE...

Full description

Saved in:
Bibliographic Details
Main Authors: SRIVASTAVA, Aishwarya, Saisubramanian, Sandhya, Paruchuri, Praveen, KUMAR, Akshat, Zilberstein, Shlomo
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2023
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/8092
https://ink.library.smu.edu.sg/context/sis_research/article/9095/viewcontent/26767_pvoa.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Autonomous systems are often deployed in the open world where it is hard to obtain complete specifications of objectives and constraints. Operating based on an incomplete model can produce negative side effects (NSEs), which affect the safety and reliability of the system. We focus on mitigating NSEs in environments modeled as Markov decision processes (MDPs). First, we learn a model of NSEs using observed data that contains state-action trajectories and severity of associated NSEs. Unlike previous works that associate NSEs with state-action pairs, our framework associates NSEs with entire trajectories, which is more general and captures non-Markovian dependence on states and actions. Second, we learn finite state controllers (FSCs) that predict NSE severity for a given trajectory and generalize well to unseen data. Finally, we develop a constrained MDP model that uses information from the underlying MDP and the learned FSC for planning while avoiding NSEs. Our empirical evaluation demonstrates the effectiveness of our approach in learning and mitigating Markovian and non-Markovian NSEs.