Diffusion-based negative sampling on graphs for link prediction
Link prediction is a fundamental task for graph analysis with important applications on the Web, such as social network analysis and recommendation systems, etc. Modern graph link prediction methods often employ a contrastive approach to learn robust node representations, where negative sampling is...
Saved in:
主要作者: | FANG, Yuan |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2024
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/8709 https://ink.library.smu.edu.sg/context/sis_research/article/9712/viewcontent/DMNS__WWW24_Camera_Ready___1_.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Reinforced negative sampling over knowledge graph for recommendation
由: WANG, Xiang, et al.
出版: (2020) -
Topic-aware heterogeneous graph neural network for link prediction
由: XU, Siyong, et al.
出版: (2021) -
Link prediction on latent heterogeneous graphs
由: NGUYEN, Trung Kien, et al.
出版: (2023) -
Contrastive general graph matching with adaptive augmentation sampling
由: BO, Jianyuan, et al.
出版: (2024) -
Heterogeneous graph transformer with poly-tokenization
由: LU, Zhiyuan, et al.
出版: (2024)