The impact of automated feature selection techniques on the interpretation of defect models
The interpretation of defect models heavily relies on software metrics that are used to construct them. Prior work often uses feature selection techniques to remove metrics that are correlated and irrelevant in order to improve model performance. Yet, conclusions that are derived from defect models...
محفوظ في:
المؤلفون الرئيسيون: | JIARPAKDEE, Jirayus, TANTITHAMTHAVORN, Chakkrit, TREUDE, Christoph |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8796 https://ink.library.smu.edu.sg/context/sis_research/article/9799/viewcontent/s10664_020_09848_1.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Autospearman: Automatically mitigating correlated software metrics for interpreting defect models
بواسطة: JIARPAKDEE, Jirayus, وآخرون
منشور في: (2018) -
Artefact: An R implementation of the autospearman function
بواسطة: JIARPAKDEE, Jirayus, وآخرون
منشور في: (2018) -
Supervised vs unsupervised models: A holistic look at effort-aware just-in-time defect prediction
بواسطة: HUANG, Qiao, وآخرون
منشور في: (2017) -
Information Retrieval Based Nearest Neighbor Classification for Fine-Grained Bug Severity Prediction
بواسطة: TIAN, Yuan, وآخرون
منشور في: (2012) -
Feature selection for the prediction of translation initiation sites
بواسطة: Li, G.-L., وآخرون
منشور في: (2013)