Mechanical structure optimization in minimum-time motion control of flexible bodies
© 2015 Elsevier Ltd. This paper considers the problem of minimum-time motion control of a flexible body for which the dynamic properties can be optimized within a structural design. This allows a matching of modal characteristics to a control task such that reductions in time-of-motion can be achiev...
Saved in:
Main Authors: | , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84947748128&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/44531 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-44531 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-445312018-04-25T07:52:11Z Mechanical structure optimization in minimum-time motion control of flexible bodies Boonruk Suchaitanawanit Matthew O.T. Cole Agricultural and Biological Sciences © 2015 Elsevier Ltd. This paper considers the problem of minimum-time motion control of a flexible body for which the dynamic properties can be optimized within a structural design. This allows a matching of modal characteristics to a control task such that reductions in time-of-motion can be achieved compared with unoptimized designs. The problem formulation is based on an elastic structure undergoing a motion task with specified boundary conditions and subject to limits on actuation forces. A numerical method for calculating minimum-time control input solutions based on an iterative construction of the reachable set is first considered. A structural optimization approach is further developed based on continuity properties of the solution set, these admitting a first order perturbation analysis from which an optimization of system design parameters can be achieved. A selection of numerical case studies are presented involving single and multi-mode structures. Possibilities for realization of the approach using variable stiffness/deformable structures are discussed and results from a linear motion stage with tunable-stiffness flexible armature presented that demonstrate the potential benefits. 2018-01-24T04:44:17Z 2018-01-24T04:44:17Z 2015-01-01 Journal 00051098 2-s2.0-84947748128 10.1016/j.automatica.2015.09.020 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84947748128&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/44531 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Agricultural and Biological Sciences |
spellingShingle |
Agricultural and Biological Sciences Boonruk Suchaitanawanit Matthew O.T. Cole Mechanical structure optimization in minimum-time motion control of flexible bodies |
description |
© 2015 Elsevier Ltd. This paper considers the problem of minimum-time motion control of a flexible body for which the dynamic properties can be optimized within a structural design. This allows a matching of modal characteristics to a control task such that reductions in time-of-motion can be achieved compared with unoptimized designs. The problem formulation is based on an elastic structure undergoing a motion task with specified boundary conditions and subject to limits on actuation forces. A numerical method for calculating minimum-time control input solutions based on an iterative construction of the reachable set is first considered. A structural optimization approach is further developed based on continuity properties of the solution set, these admitting a first order perturbation analysis from which an optimization of system design parameters can be achieved. A selection of numerical case studies are presented involving single and multi-mode structures. Possibilities for realization of the approach using variable stiffness/deformable structures are discussed and results from a linear motion stage with tunable-stiffness flexible armature presented that demonstrate the potential benefits. |
format |
Journal |
author |
Boonruk Suchaitanawanit Matthew O.T. Cole |
author_facet |
Boonruk Suchaitanawanit Matthew O.T. Cole |
author_sort |
Boonruk Suchaitanawanit |
title |
Mechanical structure optimization in minimum-time motion control of flexible bodies |
title_short |
Mechanical structure optimization in minimum-time motion control of flexible bodies |
title_full |
Mechanical structure optimization in minimum-time motion control of flexible bodies |
title_fullStr |
Mechanical structure optimization in minimum-time motion control of flexible bodies |
title_full_unstemmed |
Mechanical structure optimization in minimum-time motion control of flexible bodies |
title_sort |
mechanical structure optimization in minimum-time motion control of flexible bodies |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84947748128&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/44531 |
_version_ |
1681422576777166848 |