Quercetin, quercetrin except rutin potentially increased pirarubicin cytotoxicity by non-competitively inhibiting the P-glycoprotein-and MRP1 function in living K562/adr and GLC4/adr cells

Problem statement: Quercetin and its glycoside derivatives are increasingly receiving interests as new generation of anticancer molecules and were recognized by multidrug resistant transporters such as P-glycoprotein and MRP1 protein. Of relevance to their use as anticancer agents alone or in combin...

Full description

Saved in:
Bibliographic Details
Main Authors: Winit Choiprasert, Nathupakorn Dechsupa, Suchart Kothan, Manuel Garrigos, Samlee Mankhetkorn
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77949890664&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51133
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-51133
record_format dspace
spelling th-cmuir.6653943832-511332018-09-04T04:52:52Z Quercetin, quercetrin except rutin potentially increased pirarubicin cytotoxicity by non-competitively inhibiting the P-glycoprotein-and MRP1 function in living K562/adr and GLC4/adr cells Winit Choiprasert Nathupakorn Dechsupa Suchart Kothan Manuel Garrigos Samlee Mankhetkorn Medicine Pharmacology, Toxicology and Pharmaceutics Problem statement: Quercetin and its glycoside derivatives are increasingly receiving interests as new generation of anticancer molecules and were recognized by multidrug resistant transporters such as P-glycoprotein and MRP1 protein. Of relevance to their use as anticancer agents alone or in combination with other agents, this study aims to analyze the interaction of the compounds with the MDR transporters including P-glycoprotein and MRP1 protein in living multidrug resistant cells. Approach: The potential MDR reversing action of flavonoids was assessed by using the cotreatment of anticancer drug, pirarubicin or daunorubicin and quercetin, quercetrin or rutin compared with the series of co-treatment of pirarubicin or daunorubicin and the known inhibitor such as cyclosporine A and verapamil. The evidence of direct interaction of molecules with MDR protein was investigated by measuring the ability of inhibition of the rate of P-glycoprotein- and MRP1-mediated efflux of pirarubicin out of cells. Results: Quercetin and its glycoside derivatives efficiently inhibited cancer cell proliferation and re-sensitize the MDR cells to pirarubicin but not for daunorubicin. Our results clearly show that quercetin, quercetrin except rutin non-competitively inhibited the function of P-glycoprotein in K562/adr and MRP1 in GLC4/adr cells. The determined KIvalue of P-glycoprotein was equal to 0.33 μM for quercetin and 1 μM for quercetrin and KIvalue of MRP1 was equal to 0.45 mM for quercetin and 0.5 mM for quercetrin. Conclusion: The overall results demonstrated that quercetin, quercetrin and rutin should be considered as potential pharmaceutical molecules that might be used as MDR inhibitors. © 2010 Science Publications. 2018-09-04T04:52:08Z 2018-09-04T04:52:08Z 2010-01-01 Journal 15574970 15574962 2-s2.0-77949890664 10.3844/ajptsp.2010.24.33 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77949890664&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/51133
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Medicine
Pharmacology, Toxicology and Pharmaceutics
spellingShingle Medicine
Pharmacology, Toxicology and Pharmaceutics
Winit Choiprasert
Nathupakorn Dechsupa
Suchart Kothan
Manuel Garrigos
Samlee Mankhetkorn
Quercetin, quercetrin except rutin potentially increased pirarubicin cytotoxicity by non-competitively inhibiting the P-glycoprotein-and MRP1 function in living K562/adr and GLC4/adr cells
description Problem statement: Quercetin and its glycoside derivatives are increasingly receiving interests as new generation of anticancer molecules and were recognized by multidrug resistant transporters such as P-glycoprotein and MRP1 protein. Of relevance to their use as anticancer agents alone or in combination with other agents, this study aims to analyze the interaction of the compounds with the MDR transporters including P-glycoprotein and MRP1 protein in living multidrug resistant cells. Approach: The potential MDR reversing action of flavonoids was assessed by using the cotreatment of anticancer drug, pirarubicin or daunorubicin and quercetin, quercetrin or rutin compared with the series of co-treatment of pirarubicin or daunorubicin and the known inhibitor such as cyclosporine A and verapamil. The evidence of direct interaction of molecules with MDR protein was investigated by measuring the ability of inhibition of the rate of P-glycoprotein- and MRP1-mediated efflux of pirarubicin out of cells. Results: Quercetin and its glycoside derivatives efficiently inhibited cancer cell proliferation and re-sensitize the MDR cells to pirarubicin but not for daunorubicin. Our results clearly show that quercetin, quercetrin except rutin non-competitively inhibited the function of P-glycoprotein in K562/adr and MRP1 in GLC4/adr cells. The determined KIvalue of P-glycoprotein was equal to 0.33 μM for quercetin and 1 μM for quercetrin and KIvalue of MRP1 was equal to 0.45 mM for quercetin and 0.5 mM for quercetrin. Conclusion: The overall results demonstrated that quercetin, quercetrin and rutin should be considered as potential pharmaceutical molecules that might be used as MDR inhibitors. © 2010 Science Publications.
format Journal
author Winit Choiprasert
Nathupakorn Dechsupa
Suchart Kothan
Manuel Garrigos
Samlee Mankhetkorn
author_facet Winit Choiprasert
Nathupakorn Dechsupa
Suchart Kothan
Manuel Garrigos
Samlee Mankhetkorn
author_sort Winit Choiprasert
title Quercetin, quercetrin except rutin potentially increased pirarubicin cytotoxicity by non-competitively inhibiting the P-glycoprotein-and MRP1 function in living K562/adr and GLC4/adr cells
title_short Quercetin, quercetrin except rutin potentially increased pirarubicin cytotoxicity by non-competitively inhibiting the P-glycoprotein-and MRP1 function in living K562/adr and GLC4/adr cells
title_full Quercetin, quercetrin except rutin potentially increased pirarubicin cytotoxicity by non-competitively inhibiting the P-glycoprotein-and MRP1 function in living K562/adr and GLC4/adr cells
title_fullStr Quercetin, quercetrin except rutin potentially increased pirarubicin cytotoxicity by non-competitively inhibiting the P-glycoprotein-and MRP1 function in living K562/adr and GLC4/adr cells
title_full_unstemmed Quercetin, quercetrin except rutin potentially increased pirarubicin cytotoxicity by non-competitively inhibiting the P-glycoprotein-and MRP1 function in living K562/adr and GLC4/adr cells
title_sort quercetin, quercetrin except rutin potentially increased pirarubicin cytotoxicity by non-competitively inhibiting the p-glycoprotein-and mrp1 function in living k562/adr and glc4/adr cells
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77949890664&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51133
_version_ 1681423714796699648