(k, e)-anonymous for ordinal data
© 2015 IEEE. Currently, the data can be gathered, analyzed, and utilized easier than ever with the aiding of Big Data technologies such as mobile devices, elastic computing platform, or convenient software tools. Thus, privacy of such data could become a bigger issue as well. In this paper, we propo...
Saved in:
Main Authors: | Surapon Riyana, Nattapon Harnsamut, Torsak Soontornphand, Juggapong Natwichai |
---|---|
格式: | Conference Proceeding |
出版: |
2018
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84964928536&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/54311 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
相似書籍
-
(k, e)-anonymous for ordinal data
由: Surapon Riyana, et al.
出版: (2018) -
Privacy preservation for trajectory data publishing by look-up table generalization
由: Nattapon Harnsamut, et al.
出版: (2018) -
Privacy preservation for re-publication data by using probabilistic graph
由: Pachara Tinamas, et al.
出版: (2020) -
Privacy preservation based on full-domain generalization for incremental data publishing
由: Torsak Soontornphand, et al.
出版: (2018) -
An efficient algorithm for incremental privacy breach on (k, e)-anonymous model
由: Bowonsak Srisungsittisunti, et al.
出版: (2018)