A generalization of Suzuki's lemma
Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn } be a sequence in [0,1] with 0 < lim infn αn < lim supnα n < 1. If zn+1=αnwn (1-α n)v n for all n ∈ ℕ , limnd (zn, v n) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, the...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-80052686272&partnerID=40&md5=bff768eb5faed71904747e70152e3393 http://cmuir.cmu.ac.th/handle/6653943832/6459 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
Summary: | Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn } be a sequence in [0,1] with 0 < lim infn αn < lim supnα n < 1. If zn+1=αnwn (1-α n)v n for all n ∈ ℕ , limnd (zn, v n) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (w n, zn) = 0. This is a generalization of Lemma 2.2 in (T. Suzuki, 2005). As a consequence, we obtain strong convergence theorems for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Copyright © 2011 B. Panyanak and A. Cuntavepanit. |
---|