A generalization of Suzuki's lemma
Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn } be a sequence in [0,1] with 0 < lim infn αn < lim supnα n < 1. If zn+1=αnwn (1-α n)v n for all n ∈ ℕ , limnd (zn, v n) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, the...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-80052686272&partnerID=40&md5=bff768eb5faed71904747e70152e3393 http://cmuir.cmu.ac.th/handle/6653943832/6459 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-6459 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-64592014-08-30T03:24:14Z A generalization of Suzuki's lemma Panyanak B. Cuntavepanit A. Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn } be a sequence in [0,1] with 0 < lim infn αn < lim supnα n < 1. If zn+1=αnwn (1-α n)v n for all n ∈ ℕ , limnd (zn, v n) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (w n, zn) = 0. This is a generalization of Lemma 2.2 in (T. Suzuki, 2005). As a consequence, we obtain strong convergence theorems for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Copyright © 2011 B. Panyanak and A. Cuntavepanit. 2014-08-30T03:24:14Z 2014-08-30T03:24:14Z 2011 Article 10853375 10.1155/2011/824718 http://www.scopus.com/inward/record.url?eid=2-s2.0-80052686272&partnerID=40&md5=bff768eb5faed71904747e70152e3393 http://cmuir.cmu.ac.th/handle/6653943832/6459 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn } be a sequence in [0,1] with 0 < lim infn αn < lim supnα n < 1. If zn+1=αnwn (1-α n)v n for all n ∈ ℕ , limnd (zn, v n) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (w n, zn) = 0. This is a generalization of Lemma 2.2 in (T. Suzuki, 2005). As a consequence, we obtain strong convergence theorems for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Copyright © 2011 B. Panyanak and A. Cuntavepanit. |
format |
Article |
author |
Panyanak B. Cuntavepanit A. |
spellingShingle |
Panyanak B. Cuntavepanit A. A generalization of Suzuki's lemma |
author_facet |
Panyanak B. Cuntavepanit A. |
author_sort |
Panyanak B. |
title |
A generalization of Suzuki's lemma |
title_short |
A generalization of Suzuki's lemma |
title_full |
A generalization of Suzuki's lemma |
title_fullStr |
A generalization of Suzuki's lemma |
title_full_unstemmed |
A generalization of Suzuki's lemma |
title_sort |
generalization of suzuki's lemma |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-80052686272&partnerID=40&md5=bff768eb5faed71904747e70152e3393 http://cmuir.cmu.ac.th/handle/6653943832/6459 |
_version_ |
1681420617710043136 |