A generalization of Suzuki's lemma

Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn } be a sequence in [0,1] with 0 < lim infn αn < lim supnα n < 1. If zn+1=αnwn (1-α n)v n for all n ∈ ℕ , limnd (zn, v n) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, the...

Full description

Saved in:
Bibliographic Details
Main Authors: Panyanak B., Cuntavepanit A.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-80052686272&partnerID=40&md5=bff768eb5faed71904747e70152e3393
http://cmuir.cmu.ac.th/handle/6653943832/6459
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-6459
record_format dspace
spelling th-cmuir.6653943832-64592014-08-30T03:24:14Z A generalization of Suzuki's lemma Panyanak B. Cuntavepanit A. Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn } be a sequence in [0,1] with 0 < lim infn αn < lim supnα n < 1. If zn+1=αnwn (1-α n)v n for all n ∈ ℕ , limnd (zn, v n) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (w n, zn) = 0. This is a generalization of Lemma 2.2 in (T. Suzuki, 2005). As a consequence, we obtain strong convergence theorems for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Copyright © 2011 B. Panyanak and A. Cuntavepanit. 2014-08-30T03:24:14Z 2014-08-30T03:24:14Z 2011 Article 10853375 10.1155/2011/824718 http://www.scopus.com/inward/record.url?eid=2-s2.0-80052686272&partnerID=40&md5=bff768eb5faed71904747e70152e3393 http://cmuir.cmu.ac.th/handle/6653943832/6459 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description Let {zn}, {wn}, and {vn} be bounded sequences in a metric space of hyperbolic type (X, d), and let {αn } be a sequence in [0,1] with 0 < lim infn αn < lim supnα n < 1. If zn+1=αnwn (1-α n)v n for all n ∈ ℕ , limnd (zn, v n) = 0, and lim supn(d (wn+1, wn) - d (zn+1, zn)) ≤ 0, then limnd (w n, zn) = 0. This is a generalization of Lemma 2.2 in (T. Suzuki, 2005). As a consequence, we obtain strong convergence theorems for the modified Halpern iterations of nonexpansive mappings in CAT(0) spaces. Copyright © 2011 B. Panyanak and A. Cuntavepanit.
format Article
author Panyanak B.
Cuntavepanit A.
spellingShingle Panyanak B.
Cuntavepanit A.
A generalization of Suzuki's lemma
author_facet Panyanak B.
Cuntavepanit A.
author_sort Panyanak B.
title A generalization of Suzuki's lemma
title_short A generalization of Suzuki's lemma
title_full A generalization of Suzuki's lemma
title_fullStr A generalization of Suzuki's lemma
title_full_unstemmed A generalization of Suzuki's lemma
title_sort generalization of suzuki's lemma
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-80052686272&partnerID=40&md5=bff768eb5faed71904747e70152e3393
http://cmuir.cmu.ac.th/handle/6653943832/6459
_version_ 1681420617710043136