Computation of Entropy of Most Likelihood State Sequence Obtained from Non Homogeneous Fuzzy Hidden Markov Chain
The entropy of a possibilistic variable provides a measure of its uncertainty. An algorithm is proposed for computing the entropy of the most likelihood state sequence obtained from the Viterbi algorithm for Non Homogeneous Fuzzy Hidden Markov Chain (NHFHMC) which is a bivariate discrete process, wh...
Saved in:
Main Authors: | Sujatha Ramalingam, Rajalaxmi Thasari Murali |
---|---|
語言: | English |
出版: |
Science Faculty of Chiang Mai University
2019
|
主題: | |
在線閱讀: | http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=6257 http://cmuir.cmu.ac.th/jspui/handle/6653943832/66173 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
語言: | English |
相似書籍
-
Uncertainty modelling and computational aspects of data association
由: Houssineau, Jeremie, et al.
出版: (2022) -
Entropy-based fuzzy clustering and fuzzy modeling
由: Yao, J., et al.
出版: (2013) -
Pedestrian tracking based on Hidden-Latent temporal Markov chain
由: Zhang, P., et al.
出版: (2013) -
Fuzzy modeling for multicriteria decision making under uncertainty
由: WANG WEI
出版: (2010) -
A program anomaly intrusion detection scheme based on fuzzy inference
由: Dau, Xuan Hoang
出版: (2014)