Protocatechuic acid inhibits inflammatory responses in LPS-activated BV2 microglia via regulating SIRT1/NF-κB pathway contributed to the suppression of microglial activation-induced PC12 cell apoptosis

© 2020 Elsevier B.V. SIRT1 exhibits inhibitory effects on microglial activation-induced neurodegeneration. Regulating SIRT1 may become a novel approach for curing neurodegenerative diseases. Protocatechuic acid (PA), a phenolic acid, has anti-neuroinflammatory effects. The effect of PA on SIRT1 in a...

Full description

Saved in:
Bibliographic Details
Main Authors: Chayanut Kaewmool, Prachya Kongtawelert, Thanyaluck Phitak, Peraphan Pothacharoen, Sasimol Udomruk
Format: Journal
Published: 2020
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078519526&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68422
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2020 Elsevier B.V. SIRT1 exhibits inhibitory effects on microglial activation-induced neurodegeneration. Regulating SIRT1 may become a novel approach for curing neurodegenerative diseases. Protocatechuic acid (PA), a phenolic acid, has anti-neuroinflammatory effects. The effect of PA on SIRT1 in activated microglia remains unknown. Here, we examined whether PA has anti-inflammatory effects against microglial activation-induced neuronal cell death via regulating SIRT1 in microglia. We found that PA inhibited the release of inflammatory mediators in LPS-activated BV2 microglia via the SIRT1/NF-κB pathway and thereby attenuated microglial activation-induced PC12 cell apoptosis. This suggests that SIRT1 mediates the anti-neuroinflammatory effects of PA to ameliorate microglial activation-induced neuron death.