Bordetella pertussis CyaA-RTX subdomain requires calcium ions for structural stability against proteolytic degradation
Previously, the 126-kDa Bordetella pertussis CyaA pore-forming (CyaA-PF) domain expressed in Escherichia coli was shown to retain its hemolytic activity. Here, a 100-kDa RTX (Repeat-in-ToXin) subcloned fragment (CyaA-RTX) containing a number of putative calcium-binding repeats was further investigat...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2018
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/11593 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
Summary: | Previously, the 126-kDa Bordetella pertussis CyaA pore-forming (CyaA-PF) domain expressed in Escherichia coli was shown to retain its hemolytic activity. Here, a 100-kDa RTX (Repeat-in-ToXin) subcloned fragment (CyaA-RTX) containing a number of putative calcium-binding repeats was further investigated. The recombinant CyaA-RTX protein, although expressed as a soluble form in a protease-deficient E. coli strain BL21(DE3)pLysS, was found to be highly sensitive to proteolytic degradation. Interestingly, the addition of calcium ions in a millimolar range into the CyaA-RTX preparation significantly prevented the degradation. Moreover, levels of proteolytic degradation were dependent on calcium concentrations, implying an important role for calcium-binding sites in the RTX subdomain for structural stability. Homology-based modeling of the repetitive blocks in the CyaA-RTX subdomain supports that this calcium-bound protein folds into a parallel β-roll structure with calcium ions acting as a structural stabilizing bridge. © 2010 Elsevier Inc. All rights reserved. |
---|