Polarization phase-shifting technique for the determination of a transparent thin film’s thickness using a modified sagnac interferometer

© 2018 Current Optics and Photonics. We propose a polarization phase-shifting technique to investigate the thickness of Ta2O5 thin films deposited on BK7 substrates, using a modified Sagnac interferometer. Incident light is split by a polarizing beam splitter into two orthogonal linearly polarized b...

全面介紹

Saved in:
書目詳細資料
Main Authors: Rapeepan Kaewon, Chutchai Pawong, Ratchapak Chitaree, Apichai Bhatranand
其他作者: Rajamangala University of Technology system
格式: Article
出版: 2019
主題:
在線閱讀:https://repository.li.mahidol.ac.th/handle/123456789/47373
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:© 2018 Current Optics and Photonics. We propose a polarization phase-shifting technique to investigate the thickness of Ta2O5 thin films deposited on BK7 substrates, using a modified Sagnac interferometer. Incident light is split by a polarizing beam splitter into two orthogonal linearly polarized beams traveling in opposite directions, and a quarter-wave plate is inserted into the common path to create an unbalanced phase condition. The linearly polarized light beams are transformed into two circularly polarized beams by transmission through a quarter-wave plate placed at the output of the interferometer. The proposed setup, therefore, yields rotating polarized light that can be used to extract a relative phase via the self-reference system. A thin-film sample inserted into the cyclic path modifies the output signal, in terms of the phase retardation. This technique utilizes three phase-shifted intensities to evaluate the phase retardation via simple signal processing, without manual adjustment of the output polarizer, which subsequently allows the thin film’s thickness to be determined. Experimental results show that the thicknesses obtained from the proposed setup are in good agreement with those acquired by a field-emission scanning electron microscope and a spectroscopic ellipsometer. Thus, the proposed interferometric arrangement can be utilized reliably for non-contact thickness measurements of transparent thin films and characterization of optical devices.