Production of human embryonic kidney 293T cells stably expressing C-X-C chemokine receptor type 4 (CXCR4) as a screening tool for anticancer lead compound targeting CXCR4
Aim: The C-X-C chemokine-receptor type 4 (CXCR4) is an emerging target for cancer drug discovery due to its high expression in cancer cells. The present study aimed to produce CXCR4 overexpressing HEK293T cells for a non-radioactive binding assay as a platform to identify drug candidates targeting C...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2022
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/73232 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.73232 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.732322022-08-04T11:45:37Z Production of human embryonic kidney 293T cells stably expressing C-X-C chemokine receptor type 4 (CXCR4) as a screening tool for anticancer lead compound targeting CXCR4 Dinh Thi Thai Ha Kittirat Glab-ampai Pornchai Rojsitthisak Opa Vajragupta Siriraj Hospital Chulalongkorn University Biochemistry, Genetics and Molecular Biology Pharmacology, Toxicology and Pharmaceutics Aim: The C-X-C chemokine-receptor type 4 (CXCR4) is an emerging target for cancer drug discovery due to its high expression in cancer cells. The present study aimed to produce CXCR4 overexpressing HEK293T cells for a non-radioactive binding assay as a platform to identify drug candidates targeting CXCR4. Main methods: HEK293T cells stably expressing human CXCR4 were constructed by transfection of CXCR4 plasmids from the human CXCR4 gene. The CXCR4 overexpressing HEK293T cells were obtained by fluorescence-activated sorting and verified by conducting the competition binding assay of a known CXCR4 inhibitor, AMD3100 (plerixafor), to determine the IC50 value against monoclonal anti-human CD184 (hCD184) antibody tagged with fluorescence probe, phycoerythrin (PE). The non-radioactive binding assay using CXCR4 overexpressing HEK293T cells and PE-anti hCD184 was applied as a platform for identifying the target of natural compounds that exhibited cytotoxicity against cancer cell lines. Key findings: The CXCR4 overexpressing HEK293T cells were produced with high expression (99.8%). The IC50 value of plerixafor determined by fluorescence tagged antibody-based competition assay using our developed cells agree with previously reported values using a radioligand binding assay. We observed no significant displacement of bound PE-anti-hCD184 by the test natural compounds which could be due to non-specific binding to other functional targets or organelles, low potency of the natural compounds, or binding to CXCR4 at deeper pockets. Significance: The verified non-radioactive binding assay can serve as an alternative screening tool for anticancer lead compounds targeting CXCR4 and an essential tool for proof of mechanism study in the drug discovery. 2022-08-04T03:38:53Z 2022-08-04T03:38:53Z 2022-08-15 Article Life Sciences. Vol.303, (2022) 10.1016/j.lfs.2022.120661 18790631 00243205 2-s2.0-85131138136 https://repository.li.mahidol.ac.th/handle/123456789/73232 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131138136&origin=inward |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Biochemistry, Genetics and Molecular Biology Pharmacology, Toxicology and Pharmaceutics |
spellingShingle |
Biochemistry, Genetics and Molecular Biology Pharmacology, Toxicology and Pharmaceutics Dinh Thi Thai Ha Kittirat Glab-ampai Pornchai Rojsitthisak Opa Vajragupta Production of human embryonic kidney 293T cells stably expressing C-X-C chemokine receptor type 4 (CXCR4) as a screening tool for anticancer lead compound targeting CXCR4 |
description |
Aim: The C-X-C chemokine-receptor type 4 (CXCR4) is an emerging target for cancer drug discovery due to its high expression in cancer cells. The present study aimed to produce CXCR4 overexpressing HEK293T cells for a non-radioactive binding assay as a platform to identify drug candidates targeting CXCR4. Main methods: HEK293T cells stably expressing human CXCR4 were constructed by transfection of CXCR4 plasmids from the human CXCR4 gene. The CXCR4 overexpressing HEK293T cells were obtained by fluorescence-activated sorting and verified by conducting the competition binding assay of a known CXCR4 inhibitor, AMD3100 (plerixafor), to determine the IC50 value against monoclonal anti-human CD184 (hCD184) antibody tagged with fluorescence probe, phycoerythrin (PE). The non-radioactive binding assay using CXCR4 overexpressing HEK293T cells and PE-anti hCD184 was applied as a platform for identifying the target of natural compounds that exhibited cytotoxicity against cancer cell lines. Key findings: The CXCR4 overexpressing HEK293T cells were produced with high expression (99.8%). The IC50 value of plerixafor determined by fluorescence tagged antibody-based competition assay using our developed cells agree with previously reported values using a radioligand binding assay. We observed no significant displacement of bound PE-anti-hCD184 by the test natural compounds which could be due to non-specific binding to other functional targets or organelles, low potency of the natural compounds, or binding to CXCR4 at deeper pockets. Significance: The verified non-radioactive binding assay can serve as an alternative screening tool for anticancer lead compounds targeting CXCR4 and an essential tool for proof of mechanism study in the drug discovery. |
author2 |
Siriraj Hospital |
author_facet |
Siriraj Hospital Dinh Thi Thai Ha Kittirat Glab-ampai Pornchai Rojsitthisak Opa Vajragupta |
format |
Article |
author |
Dinh Thi Thai Ha Kittirat Glab-ampai Pornchai Rojsitthisak Opa Vajragupta |
author_sort |
Dinh Thi Thai Ha |
title |
Production of human embryonic kidney 293T cells stably expressing C-X-C chemokine receptor type 4 (CXCR4) as a screening tool for anticancer lead compound targeting CXCR4 |
title_short |
Production of human embryonic kidney 293T cells stably expressing C-X-C chemokine receptor type 4 (CXCR4) as a screening tool for anticancer lead compound targeting CXCR4 |
title_full |
Production of human embryonic kidney 293T cells stably expressing C-X-C chemokine receptor type 4 (CXCR4) as a screening tool for anticancer lead compound targeting CXCR4 |
title_fullStr |
Production of human embryonic kidney 293T cells stably expressing C-X-C chemokine receptor type 4 (CXCR4) as a screening tool for anticancer lead compound targeting CXCR4 |
title_full_unstemmed |
Production of human embryonic kidney 293T cells stably expressing C-X-C chemokine receptor type 4 (CXCR4) as a screening tool for anticancer lead compound targeting CXCR4 |
title_sort |
production of human embryonic kidney 293t cells stably expressing c-x-c chemokine receptor type 4 (cxcr4) as a screening tool for anticancer lead compound targeting cxcr4 |
publishDate |
2022 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/73232 |
_version_ |
1763487585244545024 |