A Quantitative Approach to Unravel the Role of Host Genetics in IgG-FcγR Complex Formation After Vaccination
Fc-mediated immune functions have been correlated with protection in the RV144 HIV vaccine trial and are important for immunity to a range of pathogens. IgG antibodies (Abs) that form complexes with Fc receptors (FcRs) on innate immune cells can activate Fc-mediated immune functions. Genetic variati...
Saved in:
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2022
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/74156 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.74156 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.741562022-08-04T11:29:52Z A Quantitative Approach to Unravel the Role of Host Genetics in IgG-FcγR Complex Formation After Vaccination Melissa M. Lemke Robert M. Theisen Emily R. Bozich Milla R. McLean Christina Y. Lee Ester Lopez Supachai Rerks-Ngarm Punnee Pitisuttithum Sorachai Nitayaphan Sven Kratochvil Bruce D. Wines P. Mark Hogarth Stephen J. Kent Amy W. Chung Kelly B. Arnold Faculty of Tropical Medicine, Mahidol University University of Melbourne University of Michigan, Ann Arbor Armed Forces Research Institute of Medical Sciences, Thailand Thailand Ministry of Public Health Faculty of Medicine, Nursing and Health Sciences Harvard University Burnet Institute Immunology and Microbiology Medicine Fc-mediated immune functions have been correlated with protection in the RV144 HIV vaccine trial and are important for immunity to a range of pathogens. IgG antibodies (Abs) that form complexes with Fc receptors (FcRs) on innate immune cells can activate Fc-mediated immune functions. Genetic variation in both IgGs and FcRs have the capacity to alter IgG-FcR complex formation via changes in binding affinity and concentration. A growing challenge lies in unraveling the importance of multiple variations, especially in the context of vaccine trials that are conducted in homogenous genetic populations. Here we use an ordinary differential equation model to quantitatively assess how IgG1 allotypes and FcγR polymorphisms influence IgG-FcγRIIIa complex formation in vaccine-relevant settings. Using data from the RV144 HIV vaccine trial, we map the landscape of IgG-FcγRIIIa complex formation predicted post-vaccination for three different IgG1 allotypes and two different FcγRIIIa polymorphisms. Overall, the model illustrates how specific vaccine interventions could be applied to maximize IgG-FcγRIIIa complex formation in different genetic backgrounds. Individuals with the G1m1,17 and G1m1,3 allotypes were predicted to be more responsive to vaccine adjuvant strategies that increase antibody FcγRIIIa affinity (e.g. glycosylation modifications), compared to the G1m-1,3 allotype which was predicted to be more responsive to vaccine boosting regimens that increase IgG1 antibody titers (concentration). Finally, simulations in mixed-allotype populations suggest that the benefit of boosting IgG1 concentration versus IgG1 affinity may be dependent upon the presence of the G1m-1,3 allotype. Overall this work provides a quantitative tool for rationally improving Fc-mediated functions after vaccination that may be important for assessing vaccine trial results in the context of under-represented genetic populations. 2022-08-04T04:09:17Z 2022-08-04T04:09:17Z 2022-02-22 Article Frontiers in Immunology. Vol.13, (2022) 10.3389/fimmu.2022.820148 16643224 2-s2.0-85126033753 https://repository.li.mahidol.ac.th/handle/123456789/74156 Mahidol University SCOPUS https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126033753&origin=inward |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Immunology and Microbiology Medicine |
spellingShingle |
Immunology and Microbiology Medicine Melissa M. Lemke Robert M. Theisen Emily R. Bozich Milla R. McLean Christina Y. Lee Ester Lopez Supachai Rerks-Ngarm Punnee Pitisuttithum Sorachai Nitayaphan Sven Kratochvil Bruce D. Wines P. Mark Hogarth Stephen J. Kent Amy W. Chung Kelly B. Arnold A Quantitative Approach to Unravel the Role of Host Genetics in IgG-FcγR Complex Formation After Vaccination |
description |
Fc-mediated immune functions have been correlated with protection in the RV144 HIV vaccine trial and are important for immunity to a range of pathogens. IgG antibodies (Abs) that form complexes with Fc receptors (FcRs) on innate immune cells can activate Fc-mediated immune functions. Genetic variation in both IgGs and FcRs have the capacity to alter IgG-FcR complex formation via changes in binding affinity and concentration. A growing challenge lies in unraveling the importance of multiple variations, especially in the context of vaccine trials that are conducted in homogenous genetic populations. Here we use an ordinary differential equation model to quantitatively assess how IgG1 allotypes and FcγR polymorphisms influence IgG-FcγRIIIa complex formation in vaccine-relevant settings. Using data from the RV144 HIV vaccine trial, we map the landscape of IgG-FcγRIIIa complex formation predicted post-vaccination for three different IgG1 allotypes and two different FcγRIIIa polymorphisms. Overall, the model illustrates how specific vaccine interventions could be applied to maximize IgG-FcγRIIIa complex formation in different genetic backgrounds. Individuals with the G1m1,17 and G1m1,3 allotypes were predicted to be more responsive to vaccine adjuvant strategies that increase antibody FcγRIIIa affinity (e.g. glycosylation modifications), compared to the G1m-1,3 allotype which was predicted to be more responsive to vaccine boosting regimens that increase IgG1 antibody titers (concentration). Finally, simulations in mixed-allotype populations suggest that the benefit of boosting IgG1 concentration versus IgG1 affinity may be dependent upon the presence of the G1m-1,3 allotype. Overall this work provides a quantitative tool for rationally improving Fc-mediated functions after vaccination that may be important for assessing vaccine trial results in the context of under-represented genetic populations. |
author2 |
Faculty of Tropical Medicine, Mahidol University |
author_facet |
Faculty of Tropical Medicine, Mahidol University Melissa M. Lemke Robert M. Theisen Emily R. Bozich Milla R. McLean Christina Y. Lee Ester Lopez Supachai Rerks-Ngarm Punnee Pitisuttithum Sorachai Nitayaphan Sven Kratochvil Bruce D. Wines P. Mark Hogarth Stephen J. Kent Amy W. Chung Kelly B. Arnold |
format |
Article |
author |
Melissa M. Lemke Robert M. Theisen Emily R. Bozich Milla R. McLean Christina Y. Lee Ester Lopez Supachai Rerks-Ngarm Punnee Pitisuttithum Sorachai Nitayaphan Sven Kratochvil Bruce D. Wines P. Mark Hogarth Stephen J. Kent Amy W. Chung Kelly B. Arnold |
author_sort |
Melissa M. Lemke |
title |
A Quantitative Approach to Unravel the Role of Host Genetics in IgG-FcγR Complex Formation After Vaccination |
title_short |
A Quantitative Approach to Unravel the Role of Host Genetics in IgG-FcγR Complex Formation After Vaccination |
title_full |
A Quantitative Approach to Unravel the Role of Host Genetics in IgG-FcγR Complex Formation After Vaccination |
title_fullStr |
A Quantitative Approach to Unravel the Role of Host Genetics in IgG-FcγR Complex Formation After Vaccination |
title_full_unstemmed |
A Quantitative Approach to Unravel the Role of Host Genetics in IgG-FcγR Complex Formation After Vaccination |
title_sort |
quantitative approach to unravel the role of host genetics in igg-fcγr complex formation after vaccination |
publishDate |
2022 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/74156 |
_version_ |
1763498069171634176 |