Beta-Glucan from S. cerevisiae Protected AOM-Induced Colon Cancer in cGAS-Deficient Mice Partly through Dectin-1-Manipulated Macrophage Cell Energy
Although the impacts of Saccharomyces cerevisiae on cancers are mentioned, data on its use in mice with cyclic GMP-AMP synthase deficiency (cGAS-/-) are even rarer. Here, 12 weeks of oral administration of S. cerevisiae protected cGAS-/- mice from azoxymethane (AOM)-induced colon cancers, partly thr...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2023
|
Subjects: | |
Online Access: | https://repository.li.mahidol.ac.th/handle/123456789/83615 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Mahidol University |
id |
th-mahidol.83615 |
---|---|
record_format |
dspace |
spelling |
th-mahidol.836152023-06-18T23:45:28Z Beta-Glucan from S. cerevisiae Protected AOM-Induced Colon Cancer in cGAS-Deficient Mice Partly through Dectin-1-Manipulated Macrophage Cell Energy Binmama S. Mahidol University Biochemistry, Genetics and Molecular Biology Although the impacts of Saccharomyces cerevisiae on cancers are mentioned, data on its use in mice with cyclic GMP-AMP synthase deficiency (cGAS-/-) are even rarer. Here, 12 weeks of oral administration of S. cerevisiae protected cGAS-/- mice from azoxymethane (AOM)-induced colon cancers, partly through dysbiosis attenuation (fecal microbiome analysis). In parallel, a daily intralesional injection of a whole glucan particle (WGP; the beta-glucan extracted from S. cerevisiae) attenuated the growth of subcutaneous tumor using MC38 (murine colon cancer cell line) in cGAS-/- mice. Interestingly, the incubation of fluorescent-stained MC38 with several subtypes of macrophages, including M1 (using Lipopolysaccharide; LPS), M2 (IL-4), and tumor-associated macrophages (TAM; using MC38 supernatant activation), could not further reduce the tumor burdens (fluorescent intensity) compared with M0 (control culture media). However, WGP enhanced tumoricidal activities (fluorescent intensity), the genes of M1 pro-inflammatory macrophage polarization (IL-1β and iNOS), and Dectin-1 expression and increased cell energy status (extracellular flux analysis) in M0, M2, and TAM. In M1, WGP could not increase tumoricidal activities, Dectin-1, and glycolysis activity, despite the upregulated IL-1β. In conclusion, S. cerevisiae inhibited the growth of colon cancers through dysbiosis attenuation and macrophage energy activation, partly through Dectin-1 stimulation. Our data support the use of S. cerevisiae for colon cancer protection. 2023-06-18T16:45:28Z 2023-06-18T16:45:28Z 2022-09-01 Article International Journal of Molecular Sciences Vol.23 No.18 (2022) 10.3390/ijms231810951 14220067 16616596 36142859 2-s2.0-85138419529 https://repository.li.mahidol.ac.th/handle/123456789/83615 SCOPUS |
institution |
Mahidol University |
building |
Mahidol University Library |
continent |
Asia |
country |
Thailand Thailand |
content_provider |
Mahidol University Library |
collection |
Mahidol University Institutional Repository |
topic |
Biochemistry, Genetics and Molecular Biology |
spellingShingle |
Biochemistry, Genetics and Molecular Biology Binmama S. Beta-Glucan from S. cerevisiae Protected AOM-Induced Colon Cancer in cGAS-Deficient Mice Partly through Dectin-1-Manipulated Macrophage Cell Energy |
description |
Although the impacts of Saccharomyces cerevisiae on cancers are mentioned, data on its use in mice with cyclic GMP-AMP synthase deficiency (cGAS-/-) are even rarer. Here, 12 weeks of oral administration of S. cerevisiae protected cGAS-/- mice from azoxymethane (AOM)-induced colon cancers, partly through dysbiosis attenuation (fecal microbiome analysis). In parallel, a daily intralesional injection of a whole glucan particle (WGP; the beta-glucan extracted from S. cerevisiae) attenuated the growth of subcutaneous tumor using MC38 (murine colon cancer cell line) in cGAS-/- mice. Interestingly, the incubation of fluorescent-stained MC38 with several subtypes of macrophages, including M1 (using Lipopolysaccharide; LPS), M2 (IL-4), and tumor-associated macrophages (TAM; using MC38 supernatant activation), could not further reduce the tumor burdens (fluorescent intensity) compared with M0 (control culture media). However, WGP enhanced tumoricidal activities (fluorescent intensity), the genes of M1 pro-inflammatory macrophage polarization (IL-1β and iNOS), and Dectin-1 expression and increased cell energy status (extracellular flux analysis) in M0, M2, and TAM. In M1, WGP could not increase tumoricidal activities, Dectin-1, and glycolysis activity, despite the upregulated IL-1β. In conclusion, S. cerevisiae inhibited the growth of colon cancers through dysbiosis attenuation and macrophage energy activation, partly through Dectin-1 stimulation. Our data support the use of S. cerevisiae for colon cancer protection. |
author2 |
Mahidol University |
author_facet |
Mahidol University Binmama S. |
format |
Article |
author |
Binmama S. |
author_sort |
Binmama S. |
title |
Beta-Glucan from S. cerevisiae Protected AOM-Induced Colon Cancer in cGAS-Deficient Mice Partly through Dectin-1-Manipulated Macrophage Cell Energy |
title_short |
Beta-Glucan from S. cerevisiae Protected AOM-Induced Colon Cancer in cGAS-Deficient Mice Partly through Dectin-1-Manipulated Macrophage Cell Energy |
title_full |
Beta-Glucan from S. cerevisiae Protected AOM-Induced Colon Cancer in cGAS-Deficient Mice Partly through Dectin-1-Manipulated Macrophage Cell Energy |
title_fullStr |
Beta-Glucan from S. cerevisiae Protected AOM-Induced Colon Cancer in cGAS-Deficient Mice Partly through Dectin-1-Manipulated Macrophage Cell Energy |
title_full_unstemmed |
Beta-Glucan from S. cerevisiae Protected AOM-Induced Colon Cancer in cGAS-Deficient Mice Partly through Dectin-1-Manipulated Macrophage Cell Energy |
title_sort |
beta-glucan from s. cerevisiae protected aom-induced colon cancer in cgas-deficient mice partly through dectin-1-manipulated macrophage cell energy |
publishDate |
2023 |
url |
https://repository.li.mahidol.ac.th/handle/123456789/83615 |
_version_ |
1781416227330064384 |