Modelling and manual tuning PID control of quadcopter
As the most common unmanned aerial vehicle either in the industry or public, quadcopter has gained a significant interest for future technological developments. There are vast applications of quadcopter such as aerial photography and videography, involved in search and rescue missions, spying and mo...
Saved in:
Main Authors: | , |
---|---|
Format: | Book Section |
Published: |
Springer Science and Business Media Deutschland GmbH
2022
|
Subjects: | |
Online Access: | http://eprints.utm.my/id/eprint/100747/ http://dx.doi.org/10.1007/978-981-19-3923-5_30 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universiti Teknologi Malaysia |
Summary: | As the most common unmanned aerial vehicle either in the industry or public, quadcopter has gained a significant interest for future technological developments. There are vast applications of quadcopter such as aerial photography and videography, involved in search and rescue missions, spying and more. A quadcopter is under-actuated where there are six types of motion but only has four rotors to control the motions. In this paper, mathematical modelling of a quadcopter is formulated through the fundamental of Newton-Euler method. Varying the speed of the four rotors can produce thrust, roll, pitch and yaw torque which results in specific movements of the quadcopter. The Proportional-Integral-Derivative (PID) controller is employed in this study due to its simplicity and easy to design. The PID parameters are tuned using manual tuning technique. The quadcopter model is built and simulated with PID controllers using MATLAB Simulink. The simulation results demonstrated the effectiveness of the proposed well-tuned PID controller for altitude and attitude stabilization of the quadcopter. |
---|