Design of In[sub x]Ga[sub 1−x]As[sub 1−y]N[sub y]∕AlAs quantum cascade structures for 3.4 μm intersubband emission

We report the design of an active region of InxGa1−xAs1−yNy /AlAs quantum cascade laser structure emitting in the near infrared wavelength range based on an eight-band k· p model. The InxGa1−xAs1−yNy /AlAs heterostructure system is of significant interest for the development of short wavelength q...

Full description

Saved in:
Bibliographic Details
Main Authors: Dang, Y. X., Fan, Weijun
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/100771
http://hdl.handle.net/10220/18142
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We report the design of an active region of InxGa1−xAs1−yNy /AlAs quantum cascade laser structure emitting in the near infrared wavelength range based on an eight-band k· p model. The InxGa1−xAs1−yNy /AlAs heterostructure system is of significant interest for the development of short wavelength quantum cascade lasers due to its large conduction band discontinuity 1.5 eV and compatibility with the mature GaAs fabrication process. A detailed analysis of the intersubband transition energy within the conduction band as a function of layer thickness, composition, electric field, and temperature has been carried out. Finally, an optimized combination of In0.2Ga0.8As0.97N0.03 /AlAs three-coupled-well structure has been obtained. Under an applied field of 100 kV/cm and at room temperature, a shortest wavelength of 3.4 m has been achieved by making use of this system without introducing an upper lasing level beyond the X minima of the AlAs barrier