The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic di-GMP
The opportunistic human pathogen Pseudomonas aeruginosa expresses numerous acute virulence factors in the initial phase of infection, and during long-term colonization it undergoes adaptations that optimize survival in the human host. Adaptive changes that often occur during chronic infection give r...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/105675 http://hdl.handle.net/10220/26067 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-105675 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1056752022-02-16T16:29:27Z The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic di-GMP Almblad, Henrik Harrison, Joe J. Rybtke, Morten Groizeleau, Julie Givskov, Michael Parsek, Matthew R. Tolker-Nielsen, Tim Armitage, J. P. Singapore Centre for Environmental Life Sciences Engineering DRNTU::Science::Biological sciences::Microbiology::Bacteria The opportunistic human pathogen Pseudomonas aeruginosa expresses numerous acute virulence factors in the initial phase of infection, and during long-term colonization it undergoes adaptations that optimize survival in the human host. Adaptive changes that often occur during chronic infection give rise to rugose small colony variants (RSCVs), which are hyper-biofilm-forming mutants that commonly possess mutations that increase production of the biofilm-promoting secondary messenger cyclic di-GMP (c-di-GMP). We show that RSCVs display a decreased production of acute virulence factors as a direct result of elevated c-di-GMP content. Overproduction of c-di-GMP causes a decrease in the transcription of virulence factor genes that are regulated by the global virulence regulator Vfr. The low level of Vfr-dependent transcription is caused by a low level of its coactivator, cyclic AMP (cAMP), which is decreased in response to a high level of c-di-GMP. Mutations that cause reversion of the RSCV phenotype concomitantly reactivate Vfr-cAMP signaling. Attempts to uncover the mechanism underlying the observed c-di-GMP-mediated lowering of cAMP content provided evidence that it is not caused by inhibition of adenylate cyclase production or activity and that it is not caused by activation of cAMP phosphodiesterase activity. In addition to the studies of the RSCVs, we present evidence that the deeper layers of wild-type P. aeruginosa biofilms have high c-di-GMP levels and low cAMP levels. Published version 2015-06-25T03:03:16Z 2019-12-06T21:55:39Z 2015-06-25T03:03:16Z 2019-12-06T21:55:39Z 2015 2015 Journal Article Almblad, H., Harrison, J. J., Rybtke, M., Groizeleau, J., Givskov, M., Parsek, M. R., et al. (2015). The Cyclic AMP-Vfr Signaling Pathway in Pseudomonas aeruginosa Is Inhibited by Cyclic Di-GMP. Journal of Bacteriology, 197(13), 2190-2200. https://hdl.handle.net/10356/105675 http://hdl.handle.net/10220/26067 10.1128/JB.00193-15 25897033 en Journal of Bacteriology © 2015 American Society for Microbiology (ASM). This paper was published in Journal of Bacteriology and is made available as an electronic reprint (preprint) with permission of American Society for Microbiology (ASM). The published version is available at: [http://dx.doi.org/10.1128/JB.00193-15]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Biological sciences::Microbiology::Bacteria |
spellingShingle |
DRNTU::Science::Biological sciences::Microbiology::Bacteria Almblad, Henrik Harrison, Joe J. Rybtke, Morten Groizeleau, Julie Givskov, Michael Parsek, Matthew R. Tolker-Nielsen, Tim The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic di-GMP |
description |
The opportunistic human pathogen Pseudomonas aeruginosa expresses numerous acute virulence factors in the initial phase of infection, and during long-term colonization it undergoes adaptations that optimize survival in the human host. Adaptive changes that often occur during chronic infection give rise to rugose small colony variants (RSCVs), which are hyper-biofilm-forming mutants that commonly possess mutations that increase production of the biofilm-promoting secondary messenger cyclic di-GMP (c-di-GMP). We show that RSCVs display a decreased production of acute virulence factors as a direct result of elevated c-di-GMP content. Overproduction of c-di-GMP causes a decrease in the transcription of virulence factor genes that are regulated by the global virulence regulator Vfr. The low level of Vfr-dependent transcription is caused by a low level of its coactivator, cyclic AMP (cAMP), which is decreased in response to a high level of c-di-GMP. Mutations that cause reversion of the RSCV phenotype concomitantly reactivate Vfr-cAMP signaling. Attempts to uncover the mechanism underlying the observed c-di-GMP-mediated lowering of cAMP content provided evidence that it is not caused by inhibition of adenylate cyclase production or activity and that it is not caused by activation of cAMP phosphodiesterase activity. In addition to the studies of the RSCVs, we present evidence that the deeper layers of wild-type P. aeruginosa biofilms have high c-di-GMP levels and low cAMP levels. |
author2 |
Armitage, J. P. |
author_facet |
Armitage, J. P. Almblad, Henrik Harrison, Joe J. Rybtke, Morten Groizeleau, Julie Givskov, Michael Parsek, Matthew R. Tolker-Nielsen, Tim |
format |
Article |
author |
Almblad, Henrik Harrison, Joe J. Rybtke, Morten Groizeleau, Julie Givskov, Michael Parsek, Matthew R. Tolker-Nielsen, Tim |
author_sort |
Almblad, Henrik |
title |
The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic di-GMP |
title_short |
The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic di-GMP |
title_full |
The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic di-GMP |
title_fullStr |
The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic di-GMP |
title_full_unstemmed |
The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic di-GMP |
title_sort |
cyclic amp-vfr signaling pathway in pseudomonas aeruginosa is inhibited by cyclic di-gmp |
publishDate |
2015 |
url |
https://hdl.handle.net/10356/105675 http://hdl.handle.net/10220/26067 |
_version_ |
1725985763329310720 |