Event-triggered control for a saturated nonlinear system with prescribed performance and finite-time convergence

This paper presents an event-triggered controller for a class of saturated uncertain nonlinear systems. We develop a performance constrained finite-time controller to guarantee that the tracking error converges at a prescribed convergence rate and does not exceed the given maximum overshoot. A smoot...

Full description

Saved in:
Bibliographic Details
Main Authors: Zheng, Zewei, Lau, Gih-Keong, Xie, Lihua
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/142144
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This paper presents an event-triggered controller for a class of saturated uncertain nonlinear systems. We develop a performance constrained finite-time controller to guarantee that the tracking error converges at a prescribed convergence rate and does not exceed the given maximum overshoot. A smooth function is designed to replace the absolute and signum operators in existing finite-time controllers that lead to nondifferentiable virtual controls. Then, a novel backstepping design consisting of an adaptive law and an auxiliary system governed by a smooth switching function is developed to compensate for the uncertainty, the triggering event threshold, and the saturation constraint. Theoretical analysis demonstrates that under the proposed controller, all closed-loop signals are bounded and the Zeno behavior is avoided. Furthermore, the tracking error will converge toward a residual set in finite time, and the prescribed transient and steady tracking performance bounds are never violated. Results from a comparative simulation study illustrate the effectiveness and advantages of the proposed method.