In vitro biocompatibility of diazirine-grafted biomaterials

Photoactivation of aryl-diazirines is an emerging method of rapid, covalent crosslinking under ambient conditions. These attributes make those compounds candidates for grafting onto inert polymer backbones in order to produce stimuli-sensitive biomaterials. However, no risk assessments are available...

Full description

Saved in:
Bibliographic Details
Main Authors: Djordjevic, Ivan, Wicaksono, Gautama, Solic, Ivan, Steele, Terry W. J.
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/144482
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Photoactivation of aryl-diazirines is an emerging method of rapid, covalent crosslinking under ambient conditions. These attributes make those compounds candidates for grafting onto inert polymer backbones in order to produce stimuli-sensitive biomaterials. However, no risk assessments are available to gauge the toxicity of the leachable components after crosslinking activation. Herein, a stimuli-sensitive biomaterial is formulated from diazirine-grafted polycaprolactone tetrol. Also known as CaproGlu, this biomaterial undergoes UVA-activated crosslinking, with many positive attributes toward bioadhesive applications; hydrophobic, solvent-free, liquid at room temperature, and transitions into a foam biorubber after mild UVA illumination. As a model diazirine-grafted biomaterial, hydrolyzed CaproGlu leachates are evaluated for genotoxicity and skin sensitization, namely, Ames test, direct peptide reactivity, and ARE-Nrf2 luciferase assays. The degradation products of diazirine-mediated crosslinking observe little to no risk of in vitro genotoxicity or skin sensitization.