Angle-displacement rigidity theory with application to distributed network localization

This article investigates the localization problem of a network in 2-D and 3-D spaces given the positions of anchor nodes in a global frame and internode relative measurements in local coordinate frames. It is assumed that the local frames of different nodes have different unknown orientations. Firs...

Full description

Saved in:
Bibliographic Details
Main Authors: Fang, Xu, Li, Xiaolei, Xie, Lihua
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/151758
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This article investigates the localization problem of a network in 2-D and 3-D spaces given the positions of anchor nodes in a global frame and internode relative measurements in local coordinate frames. It is assumed that the local frames of different nodes have different unknown orientations. First, an angle-displacement rigidity theory is developed, which can be used to localize all the free nodes by the known positions of the anchor nodes and local relative measurements (local relative position, distance, local relative bearing, angle, or ratio-of-distance measurements). Then, necessary and sufficient conditions for network localizability are given. Finally, a distributed network localization protocol is proposed, which can globally estimate the locations of all the free nodes of a network if the network is infinitesimally angle-displacement rigid. The proposed method unifies local-relative-position-based, distance-based, local-relative-bearing-based, angle-based, and ratio-of-distance-based distributed network localization approaches. The novelty of this article is that the proposed method can be applied in both generic and nongeneric configurations with an unknown global coordinate frame in both 2-D and 3-D spaces.