Haptic manipulation of 3D scans for geometric feature enhancement

Localisation of geometric features like holes, edges, slots, etc. is vital to robotic planning in industrial automation settings. Low-cost 3D scanners are crucial in terms of improving accessibility, but pose a practical challenge to feature localisation because of poorer resolution and consequently...

Full description

Saved in:
Bibliographic Details
Main Authors: Turlapati, Sri Harsha, Accoto, Dino, Campolo, Domenico
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/153927
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Localisation of geometric features like holes, edges, slots, etc. is vital to robotic planning in industrial automation settings. Low-cost 3D scanners are crucial in terms of improving accessibility, but pose a practical challenge to feature localisation because of poorer resolution and consequently affect robotic planning. In this work, we address the possibility of enhancing the quality of a 3D scan by a manual 'touch-up' of task-relevant features, to ensure their automatic detection prior to automation. We propose a framework whereby the operator (i) has access to both the actual work-piece and its 3D scan; (ii) evaluates the missing salient features from the scan; (iii) uses a haptic stylus to physically interact with the actual work-piece, around such specific features; (iv) interactively updates the scan using the position and force information from the haptic stylus. The contribution of this work is the use of haptic mismatch for geometric update. Specifically, the geometry from the 3D scan is used to predict haptic feedback at a point on the work-piece surface. The haptic mismatch is derived as a measure of error between this prediction and the real interaction forces from physical contact at that point on the work-piece. The geometric update is driven until the haptic mismatch is minimised. Convergence of the proposed algorithm is first numerically verified on an analytical surface with simulated physical interaction. Error analysis of the surface position and orientations were also plotted. Experiments were conducted using a motion capture system providing sub-mm accuracy in position and a 6 axis F/T sensor. Missing features are successfully detected after the update of the scan using the proposed method in an experiment.