Radiation hardened RISC-V processor

This thesis focuses on designing and validating an open-source 32-bit RISC-V processor and implementing using NTU’s in-house RHBD cell library. We inves tigate, analyse and compare the final layout in timing, area, and power based on three different libraries: (a) Full triple-module-redundancy (T...

Full description

Saved in:
Bibliographic Details
Main Author: Gu, Haoteng
Other Authors: Chang Joseph
Format: Thesis-Master by Coursework
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/156208
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-156208
record_format dspace
spelling sg-ntu-dr.10356-1562082023-07-04T17:51:28Z Radiation hardened RISC-V processor Gu, Haoteng Chang Joseph School of Electrical and Electronic Engineering EJSCHANG@ntu.edu.sg Engineering::Electrical and electronic engineering This thesis focuses on designing and validating an open-source 32-bit RISC-V processor and implementing using NTU’s in-house RHBD cell library. We inves tigate, analyse and compare the final layout in timing, area, and power based on three different libraries: (a) Full triple-module-redundancy (TMR) technique using the GF 65nm library (b) DICE library (c) NTU’s in-house library The results show that the RHBD RISC-V design using NTU’s in-house library passes functional tests at 250MHz, and can run higher if a faster SRAM is used. This suggests that NTU’s in-house library is applicable for high-speed applica tions. The results also show that the implementation using our in-house library is about 33% smaller than the implementation using DICE and about 60% smaller than the implementation applying full TMR using the GF 65nm library. In terms of power consumption, the implementation using our in-house library is almost equal to the implementation using the DICE library and 30% smaller than the implementation applying full TMR in the worst case. Overall, in the implementation of the RHBD RISC-V processor, we conclude that the application of NTU’s in-house RHBD library is superior to reported RHBD methodologies, including DICE and TMR. Master of Science (Integrated Circuit Design) 2022-04-07T01:20:56Z 2022-04-07T01:20:56Z 2022 Thesis-Master by Coursework Gu, H. (2022). Radiation hardened RISC-V processor. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/156208 https://hdl.handle.net/10356/156208 en application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Electrical and electronic engineering
spellingShingle Engineering::Electrical and electronic engineering
Gu, Haoteng
Radiation hardened RISC-V processor
description This thesis focuses on designing and validating an open-source 32-bit RISC-V processor and implementing using NTU’s in-house RHBD cell library. We inves tigate, analyse and compare the final layout in timing, area, and power based on three different libraries: (a) Full triple-module-redundancy (TMR) technique using the GF 65nm library (b) DICE library (c) NTU’s in-house library The results show that the RHBD RISC-V design using NTU’s in-house library passes functional tests at 250MHz, and can run higher if a faster SRAM is used. This suggests that NTU’s in-house library is applicable for high-speed applica tions. The results also show that the implementation using our in-house library is about 33% smaller than the implementation using DICE and about 60% smaller than the implementation applying full TMR using the GF 65nm library. In terms of power consumption, the implementation using our in-house library is almost equal to the implementation using the DICE library and 30% smaller than the implementation applying full TMR in the worst case. Overall, in the implementation of the RHBD RISC-V processor, we conclude that the application of NTU’s in-house RHBD library is superior to reported RHBD methodologies, including DICE and TMR.
author2 Chang Joseph
author_facet Chang Joseph
Gu, Haoteng
format Thesis-Master by Coursework
author Gu, Haoteng
author_sort Gu, Haoteng
title Radiation hardened RISC-V processor
title_short Radiation hardened RISC-V processor
title_full Radiation hardened RISC-V processor
title_fullStr Radiation hardened RISC-V processor
title_full_unstemmed Radiation hardened RISC-V processor
title_sort radiation hardened risc-v processor
publisher Nanyang Technological University
publishDate 2022
url https://hdl.handle.net/10356/156208
_version_ 1772827574177628160