Deep learning-based interest point detector for 3D point clouds

Interest point (keypoint) detection for 3D point clouds is the problem of finding stable points that are well repeatable in the 3D point cloud under arbitrary rigid transformations. These detected keypoints play essential roles in many autonomous driving and robotics applications such as 3D point cl...

Full description

Saved in:
Bibliographic Details
Main Author: Wang, Xiaoyue
Other Authors: Tay Wee Peng
Format: Thesis-Master by Coursework
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/157763
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Interest point (keypoint) detection for 3D point clouds is the problem of finding stable points that are well repeatable in the 3D point cloud under arbitrary rigid transformations. These detected keypoints play essential roles in many autonomous driving and robotics applications such as 3D point cloud-based odometry, place recognition, or 3D point cloud-based localization. In these applications, the detected keypoints in different frames are further used to extract representative features for matching, computing transformations, and estimating locations. Although there are many conventional interest point detection methods for 3D point clouds, they usually need hand-crafting for specific datasets and cannot be generalized easily to other datasets. While 2D (image) keypoint detectors have been quite successful, this is not so for 3D keypoint detectors. In this project, we investigate the challenges faced by 3D keypoint detectors and develop deep learning approaches to detect the keypoints.