Modeling adaptive platoon and reservation based autonomous intersection control: a deep reinforcement learning approach

As a strategy to reduce travel delay and enhance energy efficiency, platooning of connected and autonomous vehicles (CAVs) at non-signalized intersections has become increasingly popular in academia. However, few studies have attempted to model the relation between the optimal platoon size and the t...

全面介紹

Saved in:
書目詳細資料
Main Authors: Li, Duowei, Wu, Jianping, Zhu, Feng, Chen, Tianyi, Wong, Yiik Diew
其他作者: School of Civil and Environmental Engineering
格式: Conference or Workshop Item
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/158101
https://heart2022.com/
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:As a strategy to reduce travel delay and enhance energy efficiency, platooning of connected and autonomous vehicles (CAVs) at non-signalized intersections has become increasingly popular in academia. However, few studies have attempted to model the relation between the optimal platoon size and the traffic conditions around the intersection. To this end, this study proposes an adaptive platoon based autonomous intersection control model powered by deep reinforcement learning (DRL) technique. The model framework has following two levels: the first level adopts a First Come First Serve (FCFS) reservation based policy integrated with a nonconflicting lane selection mechanism to determine vehicles’ passing priority; and the second level applies a deep Q-network algorithm to identify the optimal platoon size based on the real-time traffic condition of an intersection. When being tested on a traffic micro-simulator, our proposed model exhibits superior performances on travel efficiency and fuel conservation as compared to the state-of-the-art methods.