FPGA implementation of back propagation neural network
This project presented a backpropagation neural network on FPGA which can conduct inference and training processes for linear and non-linear problems. The network structure chosen contains 3 input nodes, one hidden layer with three neuron units and 1 output node. In addition, this project compare...
Saved in:
主要作者: | Li, Jianing |
---|---|
其他作者: | Zheng Yuanjin |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/159255 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Implementation of a convolutional neural network on FPGA
由: Xue, Can
出版: (2018) -
Effects of training noise in back-propagation neural networks
由: Mak, Hon Wai.
出版: (2008) -
FPGA-based prototyping of drone detection algorithm
由: 李海鹏 Li, Haipeng
出版: (2024) -
AcceleNetor: FPGA-accelerated neural network implementation for side-channel analysis
由: Wang, Di
出版: (2023) -
FPGA implementation of low-power real-time convolutional neural network inference
由: Gerlinghoff, Daniel
出版: (2020)