Finite-difference methods for poisson equations
Poisson equation is a very important partial differential equation in physics and engineering applications. According to the principle of the finite difference method, the simulation region is divided into a series of discrete nodes with equal spacing grid. Then Poisson equation can be transformed i...
Saved in:
主要作者: | Dai, Weiyuan |
---|---|
其他作者: | Tan Eng Leong |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/160628 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrödinger equation
由: Tay, Wei Choon, et al.
出版: (2014) -
Two finite-difference time-domain methods incorporated with memristor
由: Yang, Zaifeng, et al.
出版: (2015) -
Alternating direction implicit finite-difference method for financial engineering
由: Wang, Dong
出版: (2012) -
Finite-difference time-domain methods for lossy and dispersive media
由: Heh, Ding Yu
出版: (2012) -
Fast alternating direction iterative method for poisson equation of potential
由: Tan, Eng Leong
出版: (2024)