Starvation, ferroptosis, and prodrug therapy synergistically enabled by a cytochrome c oxidase like nanozyme
Nanozymes, which are inorganic nanomaterials mimicking natural enzyme activities, are bringing enormous opportunities to theranostics. Herein, a cytochrome c oxidase-like nanozyme (copper-silver alloy nanoparticle, Cu-Ag NP) is demonstrated for nanocatalytic cancer therapy. Loaded with bioreductive...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/161630 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Nanozymes, which are inorganic nanomaterials mimicking natural enzyme activities, are bringing enormous opportunities to theranostics. Herein, a cytochrome c oxidase-like nanozyme (copper-silver alloy nanoparticle, Cu-Ag NP) is demonstrated for nanocatalytic cancer therapy. Loaded with bioreductive predrug (AQ4N), this Cu-Ag nanozyme unprecedentedly enables simultaneous starvation, ferroptosis, and chemical therapy with high specificity, and is able to totally eliminate tumor and greatly prolong the survival rate for 4T1-tumor-bearing mice. The underlying working mechanism is revealed both experimentally and theoretically. |
---|