Poisson kernel: avoiding self-smoothing in graph convolutional networks
Graph convolutional network is now an effective tool to deal with non-Euclidean data, such as social behavior analysis, molecular structure analysis, and skeleton-based action recognition. Graph convolutional kernel is one of the most significant factors in graph convolutional networks to extract no...
محفوظ في:
المؤلفون الرئيسيون: | Yang, Ziqing, Han, Shoudong, Zhao, Jun |
---|---|
مؤلفون آخرون: | School of Computer Science and Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/162583 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
When convolutional network meets temporal heterogeneous graphs: an effective community detection method
بواسطة: Zheng, Yaping, وآخرون
منشور في: (2023) -
A multisensory interaction framework for human-cyber–physical system based on graph convolutional networks
بواسطة: Qi, Wenqian, وآخرون
منشور في: (2024) -
A multi-hierarchical aggregation-based graph convolutional network for industrial knowledge graph embedding towards cognitive intelligent manufacturing
بواسطة: Liu, Bufan, وآخرون
منشور في: (2024) -
Graph Adversarial Training: Dynamically Regularizing Based on Graph Structure
بواسطة: FENG FULI, وآخرون
منشور في: (2020) -
EEG-based recognition of driver state related to situation awareness using graph convolutional networks
بواسطة: Li, Ruilin, وآخرون
منشور في: (2021)