Deep learning and computer chess (part 2)

A machine would need more than 10^90 years to make the first chess move using brute force method. To address this problem, various strategies based on minimax algorithms and deep learning advancements have surfaced throughout time. One innovation that is able to address this problem is giraffe ar...

Full description

Saved in:
Bibliographic Details
Main Author: Seah, Yu Liang
Other Authors: He Ying
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/162926
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:A machine would need more than 10^90 years to make the first chess move using brute force method. To address this problem, various strategies based on minimax algorithms and deep learning advancements have surfaced throughout time. One innovation that is able to address this problem is giraffe architecture. The data set was carefully chosen from chess matches between different grandmasters from around the world. To test the idea and see how the models react, various Giraffe models with different parameter settings are created.