Microbial community-based production of single cell protein from soybean-processing wastewater of variable chemical composition
The use of food-processing wastewaters to produce microbial biomass-derived single cell protein (SCP) is a sustainable way to meet the global food demand. Microbial community-based approaches to SCP production have the potential benefits of lower costs and greater resource recovery compared to pure...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/165271 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The use of food-processing wastewaters to produce microbial biomass-derived single cell protein (SCP) is a sustainable way to meet the global food demand. Microbial community-based approaches to SCP production have the potential benefits of lower costs and greater resource recovery compared to pure cultures, yet they have received scarce attention. Here, SCP production from soybean-processing wastewaters using their existent microbial communities was evaluated. Six sequencing batch reactors of 4.5-L working volume were operated at 30 °C for 34 d in cycles consisting of 3-h anaerobic and 9-h aerobic phases. Four reactors received no microbial inoculum and the remaining two were amended with 1.5 L of a mixed culture from a prior SCP production cycle. Reactors produced more SCP when fed with wastewaters of higher soluble total Kjeldahl nitrogen (sTKN) content. The protein yield in biomass ranged from 0.53 to 3.13 g protein/g sTKN, with a maximum protein content of 50 %. The average removal of soluble chemical oxygen demand (sCOD) and soluble total nitrogen (sTN) was 92 % and 73 %, respectively. Distinct microbial genera were enriched in all six bioreactors, with Azospirillum, Rhodobacter, Lactococcus, and Novosphingobium dominating. The study showed that constituents in soybean wastewater can be converted to SCP and demonstrated the effect of variable influent wastewater composition on SCP production. |
---|