Graph-based model on limited dataset: land cover semantic segmentation in remote sensing image analysis
Land cover semantic segmentation in remote sensing image analysis is essential for various applications. However, the success of deep learning models like convolutional neural networks (CNN) relies on large-scale datasets, which can be challenging to acquire. This project investigates the gene...
Saved in:
主要作者: | Seah, Lyndon |
---|---|
其他作者: | Ke Yiping, Kelly |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/165982 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
RGBD indoor semantic segmentation with segmentation transformer
由: Choong, Han Yi
出版: (2022) -
Semantic segmentation with less annotation efforts
由: Zhang, Tianyi
出版: (2020) -
Remote sensing applications of machine learning processes: satellite imagery road extraction using few shot segmentation
由: Ong, Grace Hui Lee
出版: (2023) -
4D point cloud semantic segmentation
由: Shi, Hanyu
出版: (2023) -
Deep generative model for remote sensing
由: Huang, Shiqi
出版: (2023)