On the robustness of graph neural diffusion to topology perturbations
Neural diffusion on graphs is a novel class of graph neural networks that has attracted increasing attention recently. The capability of graph neural partial differential equations (PDEs) in addressing common hurdles of graph neural networks (GNNs), such as the problems of over-smoothing and bottlen...
محفوظ في:
المؤلفون الرئيسيون: | Song, Yang, Kang, Qiyu, Wang, Sijie, Zhao, Kai, Tay, Wee Peng |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/166693 https://proceedings.neurips.cc/ https://nips.cc/Conferences/2022 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Error-correcting output codes with ensemble diversity for robust learning in neural networks
بواسطة: Song, Yang, وآخرون
منشور في: (2021) -
Stable neural ODE with Lyapunov-stable equilibrium points for defending against adversarial attacks
بواسطة: Kang, Qiyu, وآخرون
منشور في: (2023) -
PointDifformer: robust point cloud registration with neural diffusion and transformer
بواسطة: She, Rui, وآخرون
منشور في: (2024) -
Federated graph neural network
بواسطة: Koh, Tat You @ Arthur
منشور في: (2021) -
RobustLoc: robust camera pose regression in challenging driving environments
بواسطة: Wang, Sijie, وآخرون
منشور في: (2023)