Femtosecond laser-induced nano-joining of volatile tellurium nanotube memristor
Nanowire/nanotube memristor devices provide great potential for random-access high-density resistance storage. However, fabricating high-quality and stable memristors is still challenging. This paper reports multileveled resistance states of tellurium (Te) nanotube based on the clean-room free femto...
محفوظ في:
المؤلفون الرئيسيون: | , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/169593 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Nanowire/nanotube memristor devices provide great potential for random-access high-density resistance storage. However, fabricating high-quality and stable memristors is still challenging. This paper reports multileveled resistance states of tellurium (Te) nanotube based on the clean-room free femtosecond laser nano-joining method. The temperature for the entire fabrication process was maintained below 190 °C. A femtosecond laser joining technique was used to form nanowire memristor units with enhanced properties. Femtosecond (fs) laser-irradiated silver-tellurium nanotube-silver structures resulted in plasmonic-enhanced optical joining with minimal local thermal effects. This produced a junction between the Te nanotube and the silver film substrate with enhanced electrical contacts. Noticeable changes in memristor behavior were observed after fs laser irradiation. Capacitor-coupled multilevel memristor behavior was observed. Compared to previous metal oxide nanowire-based memristors, the reported Te nanotube memristor system displayed a nearly two-order stronger current response. The research displays that the multileveled resistance state is rewritable with a negative bias. |
---|