iMAT: energy-efficient in-memory acceleration for ternary neural networks with sparse dot product
Ternary Neural Networks (TNNs) achieve an excellent trade-off between model size, speed, and accuracy, quantizing weights and activations into ternary values {+1, 0, -1}. The ternary multiplication operations in TNNs equal light-weight bitwise operations, favorably in In-Memory Computing (IMC) platf...
Saved in:
Main Authors: | Zhu, Shien, Huai, Shuo, Xiong, Guochu, Liu, Weichen |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/170218 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
FAT: an in-memory accelerator with fast addition for ternary weight neural networks
由: Zhu, Shien, et al.
出版: (2022) -
Structured sparse representations for supervised and unsupervised learning
由: Zeng, Yijie
出版: (2020) -
An efficient gustavson-based sparse matrix-matrix multiplication accelerator on embedded FPGAs
由: Li, Shiqing, et al.
出版: (2023) -
Development of an online secured examination system
由: Lee, Wei Jie
出版: (2024) -
Sparse visual signal representations and selected applications
由: Hung, Tzu-Yi
出版: (2015)