Impact of interfacial engineering on MgO-based resistive switching devices for low-power applications
In this work, the resistive switching characteristics of MgO/Al2O3-based resistive random-access memory (ReRAM) devices have been reported. Analysis shows the change in dominant conduction mechanism from space-charge-limited conduction to Schottky emission owing to the incorporation of an Al2O3 inse...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/170348 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this work, the resistive switching characteristics of MgO/Al2O3-based resistive random-access memory (ReRAM) devices have been reported. Analysis shows the change in dominant conduction mechanism from space-charge-limited conduction to Schottky emission owing to the incorporation of an Al2O3 insertion layer. The MgO/Al2O3 bilayer ReRAM devices exhibit lower power operation (50.6% reduction) and better switching uniformity as compared to single-layer devices, depending on the stack configuration. This can be attributed to the lower oxygen vacancy accumulation and filament confinement at the MgO/Al2O3 interface, resulting in a more controllable switching operation. Further X-ray photoelectron spectroscopy (XPS) depth profile analysis of the bilayer device reveals that the switching dynamics are correlated directly with the oxygen vacancy concentrations. These findings indicate the importance of interfacial layer engineering in improving the resistive switching properties of MgO-based memory devices, thus allowing for low-power applications. |
---|