AutoDRIVE: a comprehensive, flexible and integrated digital twin ecosystem for enhancing autonomous driving research and education
Prototyping and validating hardware-software components, sub-systems and systems within the intelligent transportation system-of-systems framework requires a modular yet flexible and open-access ecosystem. This work presents our attempt towards developing such a comprehensive research and educati...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/171640 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Prototyping and validating hardware-software components, sub-systems and
systems within the intelligent transportation system-of-systems framework
requires a modular yet flexible and open-access ecosystem. This work presents
our attempt towards developing such a comprehensive research and education
ecosystem, called AutoDRIVE, for synergistically prototyping, simulating and
deploying cyber-physical solutions pertaining to autonomous driving as well as
smart city management. AutoDRIVE features both software as well as
hardware-in-the-loop testing interfaces with openly accessible scaled vehicle
and infrastructure components. The ecosystem is compatible with a variety of
development frameworks, and supports both single and multi-agent paradigms
through local as well as distributed computing. Most critically, AutoDRIVE is
intended to be modularly expandable to explore emergent technologies, and this
work highlights various complementary features and capabilities of the proposed
ecosystem by demonstrating four such deployment use-cases: (i) autonomous
parking using probabilistic robotics approach for mapping, localization, path
planning and control; (ii) behavioral cloning using computer vision and deep
imitation learning; (iii) intersection traversal using vehicle-to-vehicle
communication and deep reinforcement learning; and (iv) smart city management
using vehicle-to-infrastructure communication and internet-of-things. |
---|