Organocatalytic C-H functionalization of simple alkanes

The direct functionalization of inert C(sp3 )-H bonds to form carbon-carbon and carbon-heteroatom bonds offers vast potential for chemical synthesis and therefore receives increasing attention. At present, most successes come from strategies using metal catalysts/reagents or photo/electrochemical pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Su, Fen, Lu, Fengfei, Tang, Kun, Lv, Xiaokang, Luo, Zhongfu, Che, Fengrui, Long, Hongyan, Wu, Xingxing, Chi, Robin Yonggui
Other Authors: School of Chemistry, Chemical Engineering and Biotechnology
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/172118
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The direct functionalization of inert C(sp3 )-H bonds to form carbon-carbon and carbon-heteroatom bonds offers vast potential for chemical synthesis and therefore receives increasing attention. At present, most successes come from strategies using metal catalysts/reagents or photo/electrochemical processes. The use of organocatalysis for this purpose remains scarce, especially when dealing with challenging C-H bonds such as those from simple alkanes. Here we disclose the first organocatalytic direct functionalization/acylation of inert C(sp3 )-H bonds of completely unfunctionalized alkanes. Our approach involves N-heterocyclic carbene catalyst-mediated carbonyl radical intermediate generation and coupling with simple alkanes (through the corresponding alkyl radical intermediates generated via a hydrogen atom transfer process). Unreactive C-H bonds are widely present in fossil fuel feedstocks, commercially important organic polymers, and complex molecules such as natural products. Our present study shall inspire a new avenue for quick functionalization of these molecules under the light- and metal-free catalytic conditions.