Electric-field-induced semiconductor-semimetal phase transition of GeTe/SnSe van der Waals heterojunction
The electronic structure and optical property of GeTe/SnSe van der Waals heterojunction are investigated by first-principles method. We find GeTe/SnSe van der Waals heterojunction is a type-II heterojunction with an indirect band gap of 0.71 eV. The band gap can be tuned and semiconductor-semimetal...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/172512 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The electronic structure and optical property of GeTe/SnSe van der Waals heterojunction are investigated by first-principles method. We find GeTe/SnSe van der Waals heterojunction is a type-II heterojunction with an indirect band gap of 0.71 eV. The band gap can be tuned and semiconductor-semimetal phase transition is observed under both positive and negative electric field. The band offset of GeTe/SnSe van der Waals heterojunction can be controlled, and thus the potential barrier can be controlled by applying a gate voltage. Combined with the calculation of effective mass and absorption spectrum we predict that GeTe/SnSe van der Waals heterojunction has important applications in the fields of solar cell and photodetector devices. |
---|