Accelerating sparse matrix operations on FPGAs with on/off-chip memories
Sparse matrix operations on FPGAs have gained much attention. Since sparse matrix operations are memory-bounded, the hardware efficiency depends on hardware-aware data organization and dedicated hardware design. On the one side, sparse matrices are stored in the off-chip DDR and are transferred to t...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Thesis-Doctor of Philosophy |
اللغة: | English |
منشور في: |
Nanyang Technological University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/172513 https://doi.org/10.21979/N9/ATEYFB https://doi.org/10.21979/N9/EXZ0Y3 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Sparse matrix operations on FPGAs have gained much attention. Since sparse matrix operations are memory-bounded, the hardware efficiency depends on hardware-aware data organization and dedicated hardware design. On the one side, sparse matrices are stored in the off-chip DDR and are transferred to the FPGA chip via the off-chip memory bandwidth. To reduce the bandwidth requirement, sparse matrices are stored using compressed formats. However, previous compressed formats do not consider full and efficient utilization of the off-chip memory bandwidth. On the other hand, efficient hardware designs are required to process compressed data. Especially, well-organized on-chip memories can buffer reusable data and mitigate the off-chip memory bandwidth requirement. In this thesis, we mainly target sparse-matrix dense-vector multiplication (SpMV), Sparse-matrix sparse-matrix multiplication (SpMM), and sparse Long short-term memory (SpLSTM). Experimental results on Xilinx ZCU106 and PYNQ-Z1 show considerable performance speedup. |
---|