Leveraging deep generative models for non-parametric distributions in reinforcement learning
This thesis explores the use of deep generative models to enhance distribution representations in reinforcement learning (RL), leading to improved exploration, stability, and performance. It focuses on two roles of distributions in RL: policy distributions and action distributions. For policy distri...
Saved in:
主要作者: | Tang, Shi Yuan |
---|---|
其他作者: | Zhang Jie |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/173455 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Deep reinforcement learning for complex environment 1
由: Goh, Peng Aik
出版: (2024) -
Deep reinforcement learning for optimal resource allocation (II)
由: Uday, Nihal Arya
出版: (2024) -
Deep reinforcement learning for resource allocation in wireless networks
由: Kunasilan, Pravind Kummar
出版: (2025) -
SimpleNPKL: Simple Non-Parametric Kernel Learning
由: ZHUANG, Jinfeng, et al.
出版: (2009) -
Deep learning for human motion generation
由: Gu, Chenyang
出版: (2024)