RobotX: development of surface vehicle's flying drone for augmented perception
This abstract outlines the development of a competitive Unmanned Aerial Vehicle (UAV) designed and built for the RobotX 2024 Challenge. The UAV is controlled autonomously without the requirement of an onboard crew. It integrates technologies in perception, navigation, and control systems during o...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2025
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/181864 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | This abstract outlines the development of a competitive Unmanned Aerial Vehicle (UAV) designed and built for the RobotX 2024 Challenge.
The UAV is controlled autonomously without the requirement of an onboard crew. It integrates technologies in perception, navigation, and control systems during operation. Notable features include sophisticated computer vision algorithms for detecting and avoiding obstacles, precise positioning through sensor fusion, and an adaptive control algorithm to effectively navigate the challenges of maritime environments.
The UAV’s capabilities are evaluated through computer simulations coupled with physical testing. It should be able to complete the competition tasks efficiently and effectively. This Final Year Project (FYP) contributes to the progress of autonomous aerial robotics by presenting a resilient and adaptable drone for the competition. |
---|