Trajectory and velocity prediction of cut-in vehicles with deep learning method
Numerous studies have been conducted to predict lane-change trajectories. The significant differences between cut-ins and other lane changes suggest the necessity of building specialized algorithms tailored to learning vehicle cut-ins. In this paper, we explore predicting the trajectory and velocity...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Master by Coursework |
Language: | English |
Published: |
Nanyang Technological University
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/181883 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Numerous studies have been conducted to predict lane-change trajectories. The significant differences between cut-ins and other lane changes suggest the necessity of building specialized algorithms tailored to learning vehicle cut-ins. In this paper, we explore predicting the trajectory and velocity of the cut-in vehicles with a deep learning method. Particularly, we propose a prediction algorithm by combining a Transformer-based encoder and an LSTM-based decoder. The Transformer-based encoder is applied to capture features related to the driv ing context of the cut-in vehicle. The LSTM decoder is employed to predict the
trajectory and velocity of the cut-in vehicles by considering their temporal and social relationships. We extracted the cut-in events from NGSIM dataset for algorithm evaluation. We compared the performance of the proposed algorithm and three other deep learning algorithms based on the extracted cut-in events. The results suggest that the proposed algorithm outperforms other algorithms in trajectory and velocity predictions of the cut-in vehicles. Moreover, we analyze the effect of the historical data window size on the prediction performance of the proposed algorithm. |
---|